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Abstract —! Future generation of landing craft will 
autonomously look at the surface during the terminal phase of 
powered descent and then, in real-time, choose and divert to a 
safe landing site in order to avoid hazards. Enabling 
technologies for such capability have been under development 
in recent years in the Autonomous Landing Hazard Avoidance 
Technology (ALHAT) project funded by NASA’s Exploration 
Technology Development Program. ALHAT is a 
comprehensive system that spans the approach and landing 
events – from de-orbit coasting to touchdown. In this paper, we 
focus on ALHAT’s perception task of detecting hazards in the 
sensed terrain and of selecting candidate safe sites for landing. 
This task, named Hazard Detection and Avoidance (HDA), 
occurs in the middle of the landing sequence. Our approach to 
HDA employs a probabilistic model in order to better manage 
the ubiquitous uncertainties associated with noisy sensor 
measurements and navigation. Also, we explicitly take into 
account the geometry of the lander and its interaction with the 
surface when assessing hazards. Experimental results on 
synthetic Lunar-like terrain show that our HDA algorithm can 
designate safe landing locations for a variety of terrain types 
and density and abundance of hazards. The complete ALHAT 
system is undergoing ground field-testing, and is scheduled for 
additional field tests on a one-hectare, lunar-like, hazard field 
recently constructed at NASA’s Kennedy Space Center (KSC).  
Although the focus of ALHAT is on autonomous planetary 
landings, a number of terrestrial applications can also benefit 
from out HDA system. 
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1. INTRODUCTION 

Landing of spacecraft requires autonomy. For unmanned 
missions, this need is essentially due to the time delay in 

communication between the spacecraft and operators on 
Earth. For manned missions, to the Moon for example, 
autonomy can assist astronauts when landing in dark or 
hazardous regions with minimal human supervision 
required. However, autonomous landing remains very 
challenging; it is probably the most critical engineering 
aspect of any mission. It is not for no reason that the final 
moments of Mars landings have been correctly dubbed 
“minutes of terror.” Thus, the development of safe landing 
capabilities, such as on-board HDA, is strongly desired. In 
fact, robotic landings with automated HDA are among the 
goals of NASA, other nations’ space agencies, and even 
private companies. Current efforts are underway in NASA’s 
ALHAT and Lander Vision System (LVS) projects to 
design, build, and validate HDA systems up to Technology 
Readiness Level (TRL) of 6 for future lunar and Martian 
missions respectively [11, 27].  

A major hurdle to low-risk safe landing of autonomous craft 
has been a lack of reliable very high-resolution terrain 
observations, which are necessary to identify all hazards. 
For this reason, missions prior to 2008 have essentially 
landed “blind,” i.e. without full knowledge of lander-scale 
hazards from prior orbital observations and without the 
benefit of on-board hazard avoidance systems. More 
recently, advances in sub-meter imaging from high-
resolution cameras on board reconnaissance orbiters have 
resulted in surface images with unprecedented detail. 
Notable are the HiRISE camera on board the Mars 
Reconnaissance Orbiter (MRO) with a nominal ground 
sampling distance (GSD) of 0.3m [28], and the Narrow 
Angle Cameras (NAC) on board the Lunar Reconnaissance 
Orbiter (LRO) with a nominal GSD of 0.5m [4]. Automated 
analysis of the images acquired by these electro-optical 
(EO) sensors have significantly improved landing risk 
assessment for recent Mars landed missions, namely 
Phoenix (PHX) [1, 10] and the Mars Science Laboratory 
(MSL) [11]. Similar analysis is possible for future lunar 
landed missions [16]. Nevertheless, even with superior 
orbital observations, PHX and MSL still required statistical 
approximations of unseen or undetected hazards from 
orbital analysis. Thus, added capability for on-board hazard 
detection will be advantageous and minimize risk even for 
missions whose landing sites have been mapped in high-
resolution from orbit.  
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Many scientifically interesting sites tend to be located in 
terrain that is very hazardous for landing. This compels 
landings to reasonably benign sites far away from target 
sites, which may take months to reach. Undoubtedly, adding 
HDA capability to landed or touch-and-go missions can 
enable closer access to rougher terrain with high scientific 
value and can decrease the need of statistically extrapolate 
the presence of smaller hazards unseen from orbit.  

Moreover, high-resolution EO sensors in orbit may not have 
sufficient sensitivity for sub-meter observations of certain 
poorly illuminated sites of interest, such as the Moon’s 
poles. ALHAT aims to provide access, regardless of 
illumination, to these sites via an HDA system that relies on 
lidar sensors. Also, sub-meter level observations may not be 
feasible for some distant celestial bodies, such as Europa or 
Enceladus, due to the cost in funds and time to deploy 
orbiters there. Missions to such bodies are also likely to 
benefit from on-board HDA. Furthermore, in a manner 
similar to the Viking missions to Mars in the 1970s, a 
modest orbiter can acquire low-resolution imagery for rough 
landing site selection, and then a lander with HDA can be 
deployed to choose a safe landing site in real-time.  

For Earth applications, on the other hand, the available 
resources from orbit and ground instrumentation are 
substantial. Nevertheless, landings on unprepared terrain, 
whose topography may have undergone significant and 
sudden changes due to a natural disaster or conflict, requires 
new analysis of the local terrain prior to attempting a 
landing. Often there is no sufficient time available for such 
analysis since these events typically require an immediate 
response for rescue or assistance operations, day and night. 
Civilian and military organizations that carry out such 
operations could, for example, quickly deploy a swarm of 
small unmanned Short take off and Landing (STOL) craft 
equipped with HDA and thus having the ability to 
autonomously choose a safe landing site as close as possible 
to the target area. An example of efforts in this direction, 
specifically aimed at unmanned autonomous helicopter 
landing capabilities, is underway sponsored by the Office of 
Naval Research (ONR) under the Autonomous Aerial 
Cargo/Utility Systems (AACUS) program [5]. 

In this paper, we present an HDA algorithm that analyzes, in 
real-time, a high-resolution digital terrain model 
reconstructed during the terminal phase of spacecraft 
descent. The algorithm first examines the reconstructed 
terrain to determine the landing safety probabilities of 
locations on the surface, and then selects and ranks landing 
sites that exceed tolerable landing risk. The algorithm makes 
explicit use of the lander’s geometry and mechanical 
tolerances in order to model the touchdown event with 
increased fidelity. For hazard assessment, the algorithm uses 
a model of the sensor noise to deal probabilistically with the 
uncertainty in the terrain measurements. The algorithm also 
incorporates the navigation uncertainty to adjust the landing 
safety probabilities accordingly.  Lastly, the algorithm 
selects and report ranked safe landing sites to the 

spacecraft’s Automatic Flight Manager (AFM) for final 
controlled descent.  

We first review previous work related to landing autonomy, 
then give a brief description of the ALHAT system in 
Section 2 and Section 3 respectively. Section 4 describes the 
general HDA algorithm design. Section 5 gives the 
mathematical foundation for our probabilistic method of 
modeling landing safety. Section 6 illustrates performance 
evaluation results. Section 7 describes future work in the 
implementation and testing of the real-time HDA system. 
Section 8 gives the concluding remarks.  

 
2. PREVIOUS WORK 

Autonomous landings using real-time hazard detection and 
avoidance systems have not been attempted yet by any 
planetary mission. However, a number of HDA algorithms 
have been proposed in the 1990’s and early 2000’s. These 
algorithms considered using descent images from electro-
optical (EO) passive sensors in monocular and stereo 
configurations, as well as 3-D point clouds form active 
scanning and flash Lidar sensors [2, 5, 16, 22, 30, 34, 35]. 
More recently, technologies for automated detection of 
rocks and craters from EO imagery were selected by 
NASA’s New Millennium program but a funding shortfall 
precluded further development [18, 31, 32]. A recent study 
recommended active sensing as the best choice for a lunar 
mission due to its ability to work under any sun illumination 
[3]. In 2007, the ALHAT project began an end-to-end 
technology development, including HDA, using a Lidar 
[11]. The first generation HDA algorithm was produced by 
ALHAT and has gone through substantial sandbox testing, 
extensive Monte Carlo simulations, and several field tests 
[20, 25, 28, 29]. Results from these efforts indicated overall 
good performance, but suggested that further improvements 
were necessary. In this paper, we address these 
improvements via the use of a probabilistic framework.  

An earlier approach to a probabilistic HDA considered EO 
single and stereo images to detect rock and slope hazards 
during the final descent stage [19, 32]. It employed a 
mathematical model that incorporated the measurement 
uncertainty and predicted the probability of a safe landing 
by estimating the probability of finding a region where no 
hazards are detected times the probability that the selected 
region has no missed detections. Since the landing scenario 
was Mars, the availability of a statistical model for the size-
frequency distribution of rocks was used to estimate the 
probability of impacting a hazardous rock as a function of 
the lander’s size [12, 13]. This work suggested that, even 
under very conservative assumptions about the performance 
of a vision system, having on-board HDA will reduce the 
probability of a failed landing by at least a factor of four 
compared to a blind landing for any rock abundance. Thus, 
for the level of safety desired by the Mars Science 
Laboratory (MSL) rover “Curiosity,” the vision HDA 
system would allow access to nearly triple the fraction of 
the planet as a blind landing would. This would represent a 
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major improvement in access to sites of scientific value for 
a small increase in sensor payload. Analogous benefits 
should accrue to missions to the Moon and to other bodies 
in the solar system. 

 
3. THE ALHAT SYSTEM  

ALHAT’s aim is to develop and mature an end-to-end TRL 
6 system that uses a Lidar to sense the terrain in real-time 
and performs safe pinpoint landing anywhere on the Moon 
[11]. The main processing steps in the ALHAT system are 
illustrated in Figure 1. Following a terrain relative 
navigation stage (TRN) [24, 25], a hazard detection and 
avoidance (HDA) system reconstructs the topography and 
characterizes the safety of the surface in order to determine 
the safest landing locations. Then, HDA provides these 
locations to the Automatic Flight Manager (AFM) for divert 
and final touchdown maneuvers. During this final descend, 
a hazard relative navigation (HRN) stage guides the lander 
to the chosen landing site while keeping navigation drift 
within bounds [10]. Algorithms for all these stages were 
incorporated into a software package called Terrain Sensing 
And Reconstruction (TSAR) [23]. In this paper, we describe 
the HDA algorithm, encompassing hazard detection from 
noisy sensor data, consideration of navigation uncertainty, 
and selection of safe site. All the work reported here has 
been carried out under the ALHAT project. 

The ALHAT effort initially focused on capabilities needed 
for manned lunar missions in NASA’s Constellation 
program. The requirements called for hazard detection and 
avoidance on board the proposed Altair crewed lunar lander, 
a 15-meter diameter spacecraft that had a 0.3m roughness 
tolerances and a 10o slope tolerance [4, 37]. Recently, after 
the cancellation of Constellation, ALHAT is considering the 
smaller Morpheus lunar lander [17]. The ALHAT effort 
includes participation by NASA’s Johnson Space Center, 
NASA’s Langley Research Center, the C.S. Draper 
Laboratory, The Johns Hopkins University and the Jet 
Propulsion Laboratory. Support for field-testing has been 
provided by NASA’s Dryden Center, and more recently, by 
NASA’s Kennedy Space Center. 

 

Figure 1 – The ALHAT system 

 
4. HAZARD DETECTION ALGORITHM  

4.1 Prior Version 

A previous method developed in ALHAT fitted a plane the 
size of the lander to the terrain in order to determine slope 
and roughness [20]. However, plane fitting smoothens out 
roughness features and underestimates the slope of the 
lander. The proposed algorithm models the interaction 
between the terrain and the lander, as a function of its 
geometry and mechanical characteristics, thus, taking full 
advantage of the high-resolution sensor. By doing so, our 
HDA algorithm is able to detect the large tilt when a 
vehicle’s pad steps inside a crater or on top of a rock. Also, 
we can detect roughness due to crater rims and rocks present 
on the crater rims, where the previous version had trouble.  

Also, the previous algorithm used thresholds on the noisy 
roughness measurements to determine hazards. Due to the 
elevation errors, the detection thresholds were set lower than 
the hazard tolerance in order to achieve high hazard 
detection rates. However, this process introduced large 
number of false alarms and reduced the available safe area. 
To deal with this problem, we abandoned the use of specific 
hazard detection thresholds, and instead implement a 
probabilistic method to deal more rigorously with the 
measurement uncertainty associated with the sensor. 

4.2 Geometry-based Design 

The need to model the touchdown event with greater fidelity 
was recognized during the Apollo program. Figure 2 shows 
the Apollo 15 lander straddling the rim of a small hazardous 
lunar crater. The landing resulted in a vehicle tilt of about 
11o, only 1o away from the maximum allowable limit, and 
damaged the engine bell. This incident illustrates the need to 
estimate the slope of the lander’s deck more precisely.   

Recently, high resolution LRO imagery allowed detection 
and mapping of lunar craters as small as 2.5m and boulders 
larger than 1.5m [7]. Also, Digital Elevation Models 
(DEMs) with 1.5m postings have been constructed from 
NAC image stereo pairs [36]. These products provide far 
improved knowledge of lunar topography and are good tools 
to use in mission planning. However, they are not sufficient 
for the touchdown modeling necessitated above. The 0.1m 
resolution DEM, generated onboard of the ALHAT system, 
enables high-fidelity modeling and measurements. First, it 
enables taking into account the lander’s geometry explicitly 
when modeling its contact with the surface at touchdown. 
Second, it enables calculating effective slope of the lander, 
i.e. the slope of the plane given by the landing pads. And 
third, it enables assessing surface roughness of small 
hazardous features. By definition surface features become 
landing hazards as a function of the lander’s geometry and 
mechanical slope and roughness tolerances.  
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Figure 2 – Apollo 15 lander near a crater 

The HDA algorithm described here uses the parameters of   
the Altair lunar lander but without loss of generality. The 
principles of the algorithm can be used for any lander 
geometry. It is straightforward to adapt the algorithm for a 
legged lander of any size with any number of legs, as long 
as the fidelity of the DEM allows for the modeling of 
surface contact. The algorithm can be also used for a flat-
bottom lander or a non-circular lander. 

 

Figure 3 – Altair lander 

The Altair lander, illustrated in Figure 3, has a circular 
footprint of approximately 15m in diameter and is supported 
on four symmetrically placed legs with 1.5m circular 
landing pads. We determined the elevation of the pad after 
surface contact by fitting a robust plane to the DEM area 
under the pad. This procedure has the effect of averaging 
out the DEM noise and of simulating any terrain compliance 
upon contact. The larger the footpad, the less sensitive to 
noise is the calculated touchdown position. The footpad 
map, derived from the DEM in Figure 4(a) by local plane 
fits to each pixel, is illustrated in Figure 4(b). One can see a 
mound the size of the pad around each rock that the pad 
steps on. For actual mission design, a higher fidelity model 
of the pad-terrain contact can be developed, provided there 
is enough on-board processing time and sufficient DEM 
resolution. 

Since the exact orientation of the lander at touchdown is 
unknown, the algorithm considers all possible rotational 
configurations of the lander around its center, also called the 
aim point. However, orientation at touchdown can be 
predicted and limited with knowledge of the lander’s 
attitude during descent. 

(a) 

(c) 

(b) 

(d) 

Figure 4 – Portion of a synthetic lunar DEM (a) and the 
corresponding footpad map (b), slope map (c), and 

measured roughness map (d). 

For a particular rotational configuration of the lander at 
touchdown, three of the four pads will contact the surface 
and the remaining pad may be above, or also on, the surface. 
We assume that the pads are fairly rigid and do not dig deep 
into the surface. The three pads that contact the surface form 
a plane whose slope is the effective slope of the lander. This 
plane is illustrated in blue in Figure 5, with the pad on 
furthest left corner being in the air. The largest slope from 
all the orientations is recorded and assigned to the aim point. 
The results of such computations, performed at each DEM 
pixel, are shown in Figure 4(c). We can see rings of slope 
around rocks and crater rims that the lander steps on or in. 
For the large crater, the lander fits entirely inside and no 
slope is produced at the center. 

 

Figure 5 – Lander slope and roughness 

The algorithm also determines the presence of roughness 
under the lander by examining all the terrain under the 
lander. The largest perpendicular distance from the lander’s 
effective plane to the terrain above it is the value of 
roughness. The largest roughness is recorded over all 
orientations. Note that the largest slope and roughness are 
assessed independently of each other, i.e. they do not have 
to come from the same lander plane. Figure 4(d) shows the 
roughness due to rocks and the crater rim. In Figure 5 we 
can see roughness present on the right hand side.  

Finally, the slope and roughness at each DEM pixel is 
compared against the lander’s tolerances to assess a safety 
for landing. 
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4.3 Handling sensor noise 

The procedure described above is optimal for terrain 
surfaces reconstructed with very high precision. Yet, 
surfaces reconstructed from Lidar sensing have inherent 
sensor noise that makes it difficult to employ such purely 
deterministic procedures. In our case, the position and slope 
of the effective lander planes are not affected significantly 
by noise because it gets averaged out under the large lander 
pads. For much smaller landers, however, the sensitivity to 
terrain noise increases and the error in effective slope should 
be modeled. In any case, the roughness measurements made 
at individual pixels under the lander, being distances to a 
noisy terrain, inherit the elevation noise introduced by the 
sensor. 

 

Figure 6 – Assessing safety for an aim point 

To better characterize the hazards in the noisy surface, we 
use a probabilistic model of roughness. Our algorithm 
computes probability of safety for each pixel under the 
lander. This probability of safety is the probability that the 
noisy roughness measurement is above the roughness 
tolerance given the noise model of the sensor. All output 
probabilities of safety under the lander are combined 
together to derive the final probability of safety for each 
specific landing aim point and orientation. Again, the worst-
case probability value is taken across all orientations and is 

assigned to the aim point. The procedure discussed above is 
illustrated in Figure 6. 

4.4 Handling navigation uncertainty 

To incorporate the navigation uncertainty, the algorithm 
convolves the map comprising of probability values 
calculated above for all DEM pixels, with a 2-D Gaussian 
kernel. Thus, the probability of safe touchdown at a 
particular point inside a landing site is weighted by the 
probability of going to that point due to navigation error. 
This procedure produces the final estimate of success at a 
landing site, or safety score. This safety score correctly 
captures the effects of sensor noise and navigation 
uncertainty. For depiction of the entire process see Figure 7. 

  
(a) 

 
(b) 

 
(c) 

  
(d) 

Figure 7– A synthetic Lidar lunar DEM (a) and the 
corresponding slope map (b), probability of roughness 

map (c), and probability of safety map (d). 

4.5 Safe site selection 

Regional maxima are computed in the map resulting from 
the convolution in 4.4 by applying a morphological domes 
method. The locations of these maxima represent the 
landing sites the algorithm reports, ranked in order of 
decreasing safety. Since the map of scores in 4.4 is dense, 
this procedure aims to pick sites in different regions of the 
DEM. The coordinates of the best sites, along with their 
safety probability, are reported as candidates for landing to 
the AFM, which in turn, selects the final landing site. 
Provided fuel and other considerations are met, this final 
site should be the least hazardous site on the surface. 

4.6 Optimizations 

Algorithmic optimizations made for real-time operations 
include discretizing the roughness to centimeter levels and 
then using pre-computed table of corresponding probability 
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values, conservatively grouping neighboring roughness 
values in 5x5 or 10x10 pixel windows, excluding some 
infeasible orientations, sparsely computing candidate 
landing sites at 1m intervals, and using separable Gaussian 
kernels in convolution with the navigation uncertainty. 
Furthermore, a real-time parallelized version of the HDA 
algorithm was implemented in C to run on the Tilera Tile64 
multi-core processor [38, 39]. 

 
5. PROBABILISTIC MODEL 

We employ a probabilistic approach to handle the 
uncertainties in the terrain map elevations and in the 
navigation system position estimates. Our aim is to achieve 
a more accurate representation of the safety of the landing 
site that is not as overly conservative as thresholding. This 
will allow us to distinguish the safer sites when the noise 
level is close to the tolerance. 

Suppose the lander lands at a particular surface location in a 
particular orientation. We want to calculate the probability 
of safe landing given our noisy Lidar DEM. Assume we 
have already checked the slope of the lander which is 
largely unaffected by the noise. Then, our hypothesis for 
safe landing is that, in the true surface, no roughness under 
the lander exceeds its mechanical tolerance. Let H be the set 
of all possible surfaces satisfying this hypothesis, i.e. all 
safe surfaces. Then, the probability of safe landing is the 
probability that the true surface is actually one of the safe 
surfaces in H. For a given possible true surface S in H, we 
calculate the probability that S could actually be the true 
surface given the observed Lidar DEM D using Bayes’ 
theorem. Then, we sum up the resulting probabilities over 
the mutually exclusive surfaces of H. 

P(safe |D) = P(D | S)P(S)
P(D)S!H

" = k P(D | S)
S!H
"  (1) 

We assume that all surfaces in H are equally likely to be the 
true surface, i.e. to occur in the natural planetary terrain. 
Under our assumption, the term P(S) is identical for any S. 
The term P(D) is also constant. So we let their quotient 
equal k. In reality, however, surface pixels are correlated 
and some terrains with random jumps in elevation do not 
occur naturally. 

Now consider the discrete pixels making up the true surface. 
We assume that its pixels have no correlation and thus 
independently contribute to safety. We further assume that 
the sensor noise is independent and identically distributed 
(i.i.d.) at each pixel. So the pixels in the Lidar DEM are also 
independent. These assumptions let us apply Naïve Bayes 
rule and computing the probability of safety independently 
at every pixel. Let U be the set of all independent pixels 
(x,y) that are under the lander. A terrain is safe to land if and 
only if all points (x,y) are safe. Thus, the probability of safe 
landing is the product (logical and) of the probabilities of 
the individual pixels being safe. In turn, the probability of a 

given pixel (x,y) being safe is the sum (logical or) of the 
probabilities of it belonging to each one of the safe surfaces. 

P(safe) = k P(D(x, y) | S(x, y))
S(x,y)!H
"

(x,y)!U
#  (2) 

These assumptions are conservative and represent a worse 
scenario then truth but they make our math practical to 
implement. Instead of taking the product of the individual 
probabilities, one could employ a more elaborate method 
with autocorrelation to determine the overall probability of 
safety. 

For a pixel in U to be safe, the perpendicular distance from 
the lander’s actual pad plane to that pixel in the true surface 
(true roughness) must not exceed the roughness tolerance. 
However, we only have the noisy Lidar DEM to make this 
judgment. As we discussed earlier, the calculation of the 
lander’s plane using the Lid r DEM is not sensitive to the 
Lidar noise present and can be accepted as being the actual 
value. On the other hand, the distance computed using the 
Lidar DEM (measured roughness) has error due to elevation 
noise. The error in the measured roughness at a pixel is 
proportional to the error in the observed elevation at that 
pixel.  

[D(x, y)! S(x, y)]"[RD(x, y)! RS(x, y)]  (3) 

To prove that consider, a plane of the lander with equation: 

ax + by+ cz+ d = 0  (4) 

The roughness r is computed by calculation the distance to 
the plane from a point (x,y,z) on the surface: 

r = ax + by+ cz+ d
a2 + b2 + c2

 (5) 

The error in measured as compared to true roughness is: 

[RD(x, y)! RS(x, y)]=
ax + by+ cD(x, y)+ d

a2 + b2 + c2
!
ax + by+ cS(x, y)+ d

a2 + b2 + c2

=
c

a2 + b2 + c2
[D(x, y)! S(x, y)]

 
(6) 

Furthermore, the probability of the observed elevation 
D(x,y) given a particular true elevation S(x,y) is equal to the 
probability of the measured roughness RD(x,y) given the 
corresponding true roughness RS(x,y). Thus, we can restate 
the probability of safety in terms of the roughness at each 
pixel. The safe roughness values corresponding to the safe 
elevations S(x,y)! H ranges from negative infinity up to the 
roughness tolerance Tol. So, at each pixel, we integrate over 
all safe roughness values the probability that, given a 
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particular true roughness r, the measured roughness RD(x,y) 
occurred. 

P(D(x, y) | S(x, y)) = P(RD(x, y) | RS(x, y))  (7) 

P(safe) = k P(RD(x, y) | r)dr
!"

Tol

#
(x,y)$U
%  (8) 

The elevation noise is modeled as a zero-mean Gaussian 
with standard deviation ! derived from the calibration of the 
Lidar instrument. As mentioned above, the elevation noise 
is assumed to be i.i.d. at each DEM pixel. Under this simple 
Gaussian model, we have ignored the Lidar’s pixel-to-pixel 
noise variability as well as the change in noise due to the 
varying incidence angle of the sensor’s rays with the 
surface. Instead, we took the worst-case scenario of direct 
incidence and maximum pixel noise. In practice, it would be 
hard to determine the exact noise model for each DEM pixel 
where the true terrain is not known a priori and the DEM is 
assembled from mosaicked images. 

  

Figure 8 – Probability of roughness 

Given our elevation noise model, the error in the observed 
elevation at a pixel is distributed as a random Gaussian 
noise. Because of the proportionality, the roughness 
measured at every pixel is also distributed as a Gaussian, but 
centered about the true roughness r and with standard 
deviation equal to a constant times !. Thus, the probability 
of the measured roughness rd given the true roughness r is 
computed by evaluating a Gaussian with mean r and sigma 
! at s. Because of symmetry of the Gaussian, we can switch 
the mean and evaluation point. 

[D(x, y)! S(x, y)] ~ "(0,! 2 )
# D(x, y) ~ "(S(x, y),! 2 )  

(9) 

[RD(x, y)! RS(x, y)] ~ "(0,c2! 2 )
# RD(x, y) ~ "(S(x, y),c2! 2 )  

(10) 

P(rd | r) = !(r,! 2 ) rd = !(rd,!
2 ) r  (11) 

This is illustrated in Figure 8, where X is the measured 
roughness, Tol is the tolerance, and the black curve is a 
Gaussian with standard deviation ! equal to that of the 
noise. The shaded are is the probability of safety. One can 
observe that even if the measured roughness is slightly 
above the tolerance, there is still a chance this pixel can be 
safe due to the noise. On the other hand, a pixel with a 
measured roughness below the tolerance has a great 
probability of safety, but a slight chance of hazard. 

Substituting the Gaussian expression into the safety 
equation yields: 

P(safe) = k !(RD(x, y),c2! 2 ) r dr
"#

Tol

$
(x,y)%U
&

 
(12) 

 

We can take the constant c out: 

P(safe) = kc|U| !(RD(x, y),! 2 ) r dr
"#

Tol

$
(x,y)%U
&

 
(13) 

We observe that the integral expression is simply a Gaussian 
CDF evaluated at the tolerance:  

P(safe) = kc|U| !
Tol " RD(x, y)

!

#

$
%

&

'
(

(x,y))U
*

 
(14) 

Note that the proportionality constant c is different for each 
orientation, since the equation of the lander plane changes. 
The constant k is the same for all orientations and all 
landing locations. 

We compute the probability P(safe) for every possible 
orientation, and then we simply take the smallest probability 
as the final chance of landing safely at a particular location. 
This conservatively assumes that the lander will always land 
in the worst-case orientation. A weighted average of the 
probabilities can be taken instead if the chance of ending up 
in particular orientation is equally likely. 

So far we assumed any random surface is equally possible. 
One could use a prior for the possible true surfaces. Such 
prior can be obtained from lower-resolution orbital data and 
from statistical exponential rock distribution models. 

 
6. EXPERIMENTAL RESULTS 

Several test cases were designed to quantify the ability of 
the algorithm to detect a safe landing site in the presence of 
sensor noise. Synthetic terrain examples were constructed to 
be representative of challenging scenarios. The TSAR 
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package mimicked a 30° trajectory approach to those 
terrains during which overlapping flashes were collected, 
starting at 750m slant range, and a Lidar DEM was 
generated from them. The sensor flashes were simulated 
using a high-fidelity flash Lidar model provided by NASA 
Langley Research Center [3]. A Lidar with 256x256 
detector and 1° FOV, mounted on a gimbal platform, was 
assumed. The Altair vehicle geometry with hazard tolerance 
of 30cm and slope tolerance of 10° was used for the HDA 
analysis. Monte Carlo trials were run by varying the random 
Lidar noise. 

 

Figure 9 – Effect of Noise on Hazard Assessment 

The first test examined the sensitivity of the algorithm’s 
safety probability output to rock height, for various Lidar 
noise levels. A single rock with varying height was placed 
in the center of a small DEM the size of the lander. The 
standard deviation (!) of the Lidar noise was varied from 
1cm to 10cm and 100 trials with different noise realizations 
were run for each ! value. A curve depicting the mean 
safety probability versus rock height is plotted for each 
Lidar noise level in Figure 9. Examining the family of 
curves from top to bottom, one can see that as the Lidar 
noise increases, the safety probabilities for rocks decreases. 
This effect is most apparent for rocks of heights between 
20cm and 32cm depicted in the middle vertical section of 
the plot. Thus, in the presence of Lidar noise, the HDA 
algorithm is most sensitive to rocks of these heights, which 
are spread around the vehicle’s tolerance. Examining an 
individual curve from left to right, one can see that the 
safety probability monotonically drops as the rock height 
increases. In general, the probability starts dropping for 
rocks larger than 25cm and becomes virtually zero for rocks 
larger than 35cm. The sleeper the knee in the curves is 
around the tolerance, the easier it is to distinguish hazards 
from non-hazards since the average safety of a small 
hazardous rock will be much lower than that of a large safe 
rock. One can see that our HDA algorithm make such 
distinction well to the Altair lander for Lidar noises up to 
5cm 1-!. Note, however, that all safety probabilities 
outputted by HDA drop significantly for Lidar noises of 

8cm 1-! or greater. Given the size and tolerances of the 
Altair vehicle, our HDA algorithm will not work for a Lidar 
sensor with such large amount of noise. Nonetheless, 
additional experiments confirmed that our algorithm would 
function in the presence of 8cm Lidar noise if the vehicle’s 
hazard tolerance were 40cm. 

The second test examined the sensitivity of the algorithm’s 
safety probability output to rock count for varying rock 
heights. This test compared the safety probability between 
landing sites with a varying number of rocks of certain 
heights ranging from 15cm to 35cm. For a set Lidar noise of 
5cm 1-!, Figure 10 shows a family of curves, one for each 
rock count, plotting safety probability versus rock height. 
As the number of rocks of a certain height increases, the 
safety probability decreases. There is a point when a large 
number of non-hazardous rocks appear less safe than a 
single hazardous rock due to noise. To illustrate this, a black 
reference line corresponding to a site with one hazardous 
rock of 30cm in height is plotted. Observe that two 27cm 
rocks appears less safe than one 30cm rock and so do four 
26m rocks. Nevertheless, this confusion of a safe site 
containing marginally safe rocks (25-30cm) with an unsafe 
having one minimally hazardous rock is rare to occur. Lunar 
rock abundance suggest that on Smooth Mare only 2 to 3 
rocks greater than 25cm in height will occur per Altair-size 
area [18]. Fundamentally, our algorithm can distinguish 
between sites with number of non-hazards and sites with a 
few hazards. Even further, landers with smaller footprints 
will encounter fewer rocks. Thus, given the same sensor 
noise and hazard tolerance, smaller landers will have no 
problem landing on Smooth Mare using our algorithm. 

 

Figure 10 – Effect of Rock Abundance on Hazard 
Assessment 

The third test examined the ability of HDA to rank landing 
sites in the presence of Lidar noise and navigation 
uncertainty. For this purpose, we constructed a DEM with 
four quadrants of known safety separated by hazardous 
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walls as shown in Figure 11. The quadrants and their 
rankings were as follows: completely flat and safe quadrant 
(rank 1); quadrant of rocks with heights less than 25 cm also 
safe (rank 2); quadrant of rocks with mixed heights 
containing one safe site (rank 3); quadrant of all hazardous 
rocks containing no safe site (rank 4). 100 trials were run for 
each combination of 5, 8, and 10cm 1-! Lidar noise and 0, 
25, 30, 35, 40, 45, 50cm random trajectory jitter. The HDA 
algorithm reported a ranked list of landing sites within the 
DEM. Only in 6 of the total 2100 trials the ranking was 
different than expected. In those cases, the safe quadrants 1 
and 2 were swapped, due to excessive noise and jitter. 
Therefore, we are very confident that the algorithm can rank 
properly evidently different sites. 

 

Figure 11 – Cartoon version of the Digital Elevation 
Map with Four Quadrants of Known Safety Rank 

For the fourth test, lunar terrain was simulated using a DEM 
generation procedure developed at JPL that creates fractal 
terrains and adds rocks and craters from model distributions 
[18]. Ten synthetic lunar-like Smooth Mare terrain maps 
were generated and each was populated with increasing rock 
abundance of 0, 2, and 4%. 200 trials were run on each of 
the 30 maps with 5cm 1-! Lidar noise. A Gaussian 
navigation uncertainty with 1m 1-! was assumed. All top 5 
HDA selected landing sites for the 0% and 2% rock 
abundance terrains were at least 99% safe in the reference. 
For the 4% terrains, on average 4.5 of the top 5 and 2.8 of 
the top 3 sites were 99% safe. The top 1 landing site was 
always at least 99% safe. This study shows that our 
algorithm should always find a safe site in Smooth Mare 
lunar terrains with 4% or less rock abundance.  

The fifth test involved studying the slope estimation of the 
HDA algorithm. Similarly to test four, we generated 50 
maps for each of these two lunar terrain types: Smooth Mare 
(SM), the most benign, and Hammock Uplands (HU), the 
most hazardous. We ran 50 trials on each map with 5cm 1-! 
Lidar noise. Results showed that the maximum absolute 
error for slope was 0.045° on SM and 0.14° on HU. The 
average error was 0.018° on SM and 0.05° on HU. These 
insignificant errors show superb performance in estimating 
the effective lander slope in the presence of noise and thus 
in detecting slope hazards.  

7. FUTURE WORK 
A great deal of engineering work is planned and is currently 
being carried out by the ALHAT team. The integration of 
the system hardware and software components is 
progressing through a number of test campaigns inside the 
laboratory and in the field. Particularly, a final integration 
test campaign is scheduled at the Long Distance Range Test 
Range (LDTR) at NASA’s Langley Research Center in the 
late fall of 2012.  

Recently, a one-hectare hazard field illustrated in Figure 12 
was constructed at NASA’s Kennedy Space Center (KSC) 
for testing and evaluation of ALHAT’s autonomous landing 
technologies. The field’s features were based on a size-
frequency distribution of boulders and fresh craters derived 
from an actual 500 by 500 meter lunar terrain patch with 
3.4% rock abundance. A flight on-board a helicopter over 
this hazard field is planned for the winter of 2012. 

Concurrently with ALHAT, the Morpheus team at NASA’s 
Johnson Space Center has been focusing over the last 
several months on tether testing of the Morpheus prototype 
lunar lander [17]. This lander is much smaller than Altair, 
with a 3.4-meter diameter. A joint ALHAT-Morpheus test 
campaign over the hazard field at KSC is scheduled in the 
spring of 2013. The goal of this test will be to demonstrate 
autonomous safe landing of the prototype lander guided by 
the on-board ALHAT system. Successful completion of this 
test campaign would bring the technology to TRL level 6, 
the intended goal of the ALHAT project. 

 

 

 
Figure 12 – Hazard Test Field at NASA’s Kennedy Space Center 
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8. CONCLUSION 
We have developed and presented a new approach for the 
design and implementation of a real-time hazard detection 
and avoidance system for autonomous safe landing. Our 
approach has four main contributions. First, we incorporate 
the lander’s geometry and relevant mechanical tolerances to 
allow higher fidelity in the modeling of the touchdown 
event. High-resolution measurements of the surface 
topography from a Lidar sensor enable us to estimate well 
the effective lander slope and roughness. Second, we use a 
probabilistic formulation to deal explicitly with the sensor 
noise that entirely eliminates the need to set deterministic 
thresholds for hazard assessment. Given the lander’s 
tolerances to surface features and a model of the sensor 
noise, the probability of a hazard under the lander’s deck is 
determined analytically and robustly. Third, we include the 
expected navigation uncertainty into the estimation of the 
safe landing probabilities associated with each possible 
landing sites in the DEM of the terrain. Furth, we detect and 
rank safe sites to enable the AFM, or a crewmember, to 
execute a divert maneuver. A patent is pending for the 
general design of the HDA algorithm. 

A significant effort has been devoted to testing this 
approach within the integrated ALHAT system in order to 
demonstrate its utility, in real-time, for future landed 
missions. Preliminary studies on synthetic terrain indicate 
that fundamentally our algorithm can distinguish roughness 
hazards in the presence of Lidar noise. Also, our algorithm 
has shown superb performance in estimating the effective 
lander slope in the presence of noise and thus in detecting 
slope hazards. Experiments show that the HDA algorithm 
can reliably find a safe landing site for the Altair lander on 
Smooth Mare lunar terrain. 
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